Source code for pysparkling.rdd

"""Provides a Python implementation of RDDs."""

from __future__ import (division, absolute_import, print_function,
                        unicode_literals)

import math
from builtins import range, zip
from collections import defaultdict
import copy
import functools
import io
import itertools
import logging
from operator import itemgetter
import os
import pickle
import random
import subprocess
import sys

try:
    import numpy
except ImportError:
    numpy = None

from . import fileio
from .utils import portable_hash
from .exceptions import FileAlreadyExistsException, ContextIsLockedException
from .samplers import (BernoulliSampler, PoissonSampler,
                       BernoulliSamplerPerKey, PoissonSamplerPerKey)
from .stat_counter import StatCounter

maxint = sys.maxint if hasattr(sys, 'maxint') else sys.maxsize  # pylint: disable=no-member

log = logging.getLogger(__name__)


def _hash(v):
    return portable_hash(v) & 0xffffffff


[docs]class RDD(object): """RDD In Spark's original form, RDDs are Resilient, Distributed Datasets. This class reimplements the same interface with the goal of being fast on small data at the cost of being resilient and distributed. :param list partitions: A list of instances of :class:`Partition`. :param Context ctx: An instance of the applicable :class:`Context`. """ def __init__(self, partitions, ctx): if ctx.locked: raise ContextIsLockedException self._p = list(partitions) self.context = ctx self._name = None self._rdd_id = ctx.newRddId() def __getstate__(self): r = {k: v if k not in ('_p',) else None for k, v in self.__dict__.items()} return r
[docs] def compute(self, split, task_context): """interface to extend behavior for specific cases :param Partition split: a partition """ return split.x()
def partitions(self): return self._p """ Public API ---------- """
[docs] def aggregate(self, zeroValue, seqOp, combOp): """aggregate [distributed] :param zeroValue: The initial value to an aggregation, for example ``0`` or ``0.0`` for aggregating `int` s and `float` s, but any Python object is possible. :param seqOp: A reference to a function that combines the current state with a new value. In the first iteration, the current state is zeroValue. :param combOp: A reference to a function that combines outputs of seqOp. In the first iteration, the current state is zeroValue. :returns: Output of ``combOp`` operations. Example: >>> from pysparkling import Context >>> seqOp = (lambda x, y: (x[0] + y, x[1] + 1)) >>> combOp = (lambda x, y: (x[0] + y[0], x[1] + y[1])) >>> Context().parallelize( ... [1, 2, 3, 4], 2 ... ).aggregate((0, 0), seqOp, combOp) (10, 4) """ return self.context.runJob( self, lambda tc, i: functools.reduce( seqOp, i, copy.deepcopy(zeroValue) ), resultHandler=lambda l: functools.reduce( combOp, l, copy.deepcopy(zeroValue) ), )
[docs] def treeAggregate(self, zeroValue, seqOp, combOp, depth=2): """same internal behaviour as :func:`~pysparkling.RDD.aggregate()` :param depth: Not used. """ return self.aggregate(zeroValue, seqOp, combOp)
[docs] def aggregateByKey(self, zeroValue, seqFunc, combFunc, numPartitions=None): """aggregate by key :param zeroValue: The initial value to an aggregation, for example ``0`` or ``0.0`` for aggregating `int` s and `float` s, but any Python object is possible. :param seqFunc: A reference to a function that combines the current state with a new value. In the first iteration, the current state is zeroValue. :param combFunc: A reference to a function that combines outputs of seqFunc. In the first iteration, the current state is zeroValue. :param int numPartitions: Not used. :returns: An RDD with the output of ``combOp`` operations. :rtype: RDD Example: >>> from pysparkling import Context >>> seqOp = (lambda x, y: x + y) >>> combOp = (lambda x, y: x + y) >>> r = Context().parallelize( ... [('a', 1), ('b', 2), ('a', 3), ('c', 4)] ... ).aggregateByKey(0, seqOp, combOp).collectAsMap() >>> (r['a'], r['b']) (4, 2) """ def seqFuncByKey(tc, i): r = defaultdict(lambda: copy.deepcopy(zeroValue)) for k, v in i: r[k] = seqFunc(r[k], v) return r def combFuncByKey(l): r = defaultdict(lambda: copy.deepcopy(zeroValue)) for p in l: for k, v in p.items(): r[k] = combFunc(r[k], v) return r local_result = self.context.runJob(self, seqFuncByKey, resultHandler=combFuncByKey) return self.context.parallelize(local_result.items())
[docs] def cache(self): """Once a partition is computed, cache the result. Alias for :func:`~pysparkling.RDD.persist`. Example: >>> import pysparkling >>> >>> n_exec = 0 >>> >>> def _map(e): ... global n_exec ... n_exec += 1 ... return e*e >>> >>> sc = pysparkling.Context() >>> my_rdd = sc.parallelize([1, 2, 3, 4], 2).map(_map).cache() >>> >>> # no exec until here >>> n_exec 0 >>> # to get first element, compute the first partition >>> my_rdd.first() 1 >>> n_exec 2 >>> # now compute the rest >>> my_rdd.collect() [1, 4, 9, 16] >>> n_exec 4 >>> # now _map() was executed on all partitions and should >>> # not be executed again >>> my_rdd.collect() [1, 4, 9, 16] >>> n_exec 4 """ return self.persist()
[docs] def glom(self): """coalesce into a list elements of a partition :rtype: RDD >>> from pysparkling import Context >>> rdd = Context().parallelize([1, 2, 3, 4], 2) >>> sorted(rdd.glom().collect()) [[1, 2], [3, 4]] """ return self.mapPartitions(lambda items: [list(items)])
[docs] def cartesian(self, other): """cartesian product of this RDD with ``other`` :param RDD other: Another RDD. :rtype: RDD .. note:: This is currently implemented as a local operation requiring all data to be pulled on one machine. Example: >>> from pysparkling import Context >>> rdd = Context().parallelize([1, 2]) >>> sorted(rdd.cartesian(rdd).collect()) [(1, 1), (1, 2), (2, 1), (2, 2)] """ v1 = self.toLocalIterator() v2 = other.collect() return self.context.parallelize([(a, b) for a in v1 for b in v2])
[docs] def coalesce(self, numPartitions, shuffle=False): """coalesce :param int numPartitions: Number of partitions in the resulting RDD. :param shuffle: (optional) Not used. :rtype: RDD .. note:: This is currently implemented as a local operation requiring all data to be pulled on one machine. Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3], 2).coalesce(1).getNumPartitions() 1 >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3], 2).coalesce(4).getNumPartitions() 2 >>> from pysparkling import Context >>> rdd = Context().parallelize([1, 2, 3, 4, 5, 6, 7, 8], 5) >>> rdd.foreachPartition(lambda x: print(list(x))) [1] [2, 3] [4] [5, 6] [7, 8] >>> rdd.coalesce(4).foreachPartition(lambda x: print(list(x))) [1, 2, 3] [4] [5, 6] [7, 8] >>> rdd.coalesce(4).coalesce(3).foreachPartition(lambda x: print(list(x))) [1, 2, 3, 4] [5, 6] [7, 8] >>> rdd.coalesce(3).foreachPartition(lambda x: print(list(x))) [1, 2, 3] [4, 5, 6] [7, 8] """ if shuffle: return self.context.parallelize(self.toLocalIterator(), numPartitions) current_num_partitions = self.getNumPartitions() new_num_partitions = min(numPartitions, current_num_partitions) # Group partitions that will be coalesced together # Note: as new_num_partitions may not divide current_num_partitions # some groups are bigger (contains more partitions) than others small_group_size = current_num_partitions // new_num_partitions big_group_size = small_group_size + 1 number_of_big_groups = current_num_partitions % new_num_partitions number_of_small_groups = new_num_partitions - number_of_big_groups partition_mapping = ([p for p in range(number_of_big_groups) for _ in range(big_group_size)] + [p for p in range(number_of_big_groups, number_of_big_groups + number_of_small_groups) for _ in range(small_group_size)]) new_partitions = {i: [] for i in range(new_num_partitions)} def partitioned(): def move_partition_content(partition_index, partition): new_partitions[partition_mapping[partition_index]] += partition return [] # trigger an evaluation with count self.mapPartitionsWithIndex(move_partition_content).count() for p in list(new_partitions.values()): yield p # noinspection PyProtectedMember return self.context._parallelize_partitions(partitioned())
[docs] def cogroup(self, other, numPartitions=None): """Groups keys from both RDDs together. Values are nested iterators. :param RDD other: The other RDD. :param int numPartitions: Number of partitions in the resulting RDD. :rtype: RDD Example: >>> from pysparkling import Context >>> c = Context() >>> a = c.parallelize([('house', 1), ('tree', 2)]) >>> b = c.parallelize([('house', 3)]) >>> >>> [(k, sorted(list([list(vv) for vv in v]))) ... for k, v in sorted(a.cogroup(b).collect()) ... ] [('house', [[1], [3]]), ('tree', [[], [2]])] """ d_self = defaultdict(list, self.groupByKey().collect()) d_other = defaultdict(list, other.groupByKey().collect()) return self.context.parallelize([ (k, [list(d_self[k]), list(d_other[k])]) for k in set(d_self.keys()) | set(d_other.keys()) ])
[docs] def collect(self): """returns the entire dataset as a list :rtype: list Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3]).collect() [1, 2, 3] """ return self.context.runJob( self, unit_map, resultHandler=unit_collect, )
[docs] def collectAsMap(self): """returns a dictionary for a pair dataset :rtype: dict Example: >>> from pysparkling import Context >>> d = Context().parallelize([('a', 1), ('b', 2)]).collectAsMap() >>> (d['a'], d['b']) (1, 2) """ return dict(self.collect())
[docs] def count(self): """number of entries in this dataset :rtype: int Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3], 2).count() 3 """ return self.context.runJob(self, lambda tc, i: sum(1 for _ in i), resultHandler=sum)
[docs] def countApprox(self): """same as :func:`~pysparkling.RDD.count()` :rtype: int """ return self.count()
[docs] def countApproxDistinct(self): """return the number of distinct values :rtype: int .. note:: The operation is currently implemented as a local and exact operation. """ return len(set(self.toLocalIterator()))
[docs] def countByKey(self): """returns a `dict` containing the count for every key :rtype: dict Example: >>> from pysparkling import Context >>> Context().parallelize( ... [('a', 1), ('b', 2), ('b', 2)] ... ).countByKey()['b'] 2 """ return self.map(lambda r: r[0]).countByValue()
[docs] def countByValue(self): """returns a `dict` containing the count for every value :rtype: dict Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 2, 4, 1]).countByValue()[2] 2 """ def map_func(tc, x): r = defaultdict(int) for v in x: r[v] += 1 return r return self.context.runJob(self, map_func, resultHandler=sum_counts_by_keys)
[docs] def distinct(self, numPartitions=None): """returns only distinct elements :param int numPartitions: Number of partitions in the resulting RDD. :rtype: RDD Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 2, 4, 1]).distinct().count() 3 """ if numPartitions is None: numPartitions = self.getNumPartitions() return self.context.parallelize(list(set(self.toLocalIterator())), numPartitions)
[docs] def filter(self, f): """filter elements :param f: a function that decides whether to keep an element :rtype: RDD Example: >>> from pysparkling import Context >>> Context().parallelize( ... [1, 2, 2, 4, 1, 3, 5, 9], 3, ... ).filter(lambda x: x % 2 == 0).collect() [2, 2, 4] """ return MapPartitionsRDD( self, lambda tc, i, x: (xx for xx in x if f(xx)), preservesPartitioning=True, )
[docs] def first(self): """returns the first element in the dataset Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 2, 4, 1, 3, 5, 9], 3).first() 1 Works also with empty partitions: >>> from pysparkling import Context >>> Context().parallelize([1, 2], 20).first() 1 """ return self.context.runJob( self, lambda tc, iterable: iterable, allowLocal=True, resultHandler=lambda l: next(itertools.chain.from_iterable(l)), )
[docs] def flatMap(self, f, preservesPartitioning=True): """map followed by flatten :param f: The map function. :param preservesPartitioning: (optional) Preserve the partitioning of the original RDD. Default True. :rtype: RDD Example: >>> from pysparkling import Context >>> Context().parallelize(['hello', 'world']).flatMap( ... lambda x: [ord(ch) for ch in x] ... ).collect() [104, 101, 108, 108, 111, 119, 111, 114, 108, 100] """ return MapPartitionsRDD( self, lambda tc, i, x: (e for xx in x for e in f(xx)), preservesPartitioning=preservesPartitioning, )
[docs] def flatMapValues(self, f): """map operation on values in a (key, value) pair followed by a flatten :param f: The map function. :rtype: RDD Example: >>> from pysparkling import Context >>> Context().parallelize([(1, 'hi'), (2, 'world')]).flatMapValues( ... lambda x: [ord(ch) for ch in x] ... ).collect() [(1, 104), (1, 105), (2, 119), (2, 111), (2, 114), (2, 108), (2, 100)] """ return MapPartitionsRDD( self, lambda tc, i, x: ((xx[0], e) for xx in x for e in f(xx[1])), preservesPartitioning=True, )
[docs] def fold(self, zeroValue, op): """fold :param zeroValue: The inital value, for example ``0`` or ``0.0``. :param op: The reduce operation. :returns: The folded (or aggregated) value. Example: >>> from pysparkling import Context >>> my_rdd = Context().parallelize([4, 7, 2]) >>> my_rdd.fold(0, lambda a, b: a+b) 13 """ return self.aggregate(zeroValue, op, op)
[docs] def foldByKey(self, zeroValue, op): """Fold (or aggregate) value by key. :param zeroValue: The inital value, for example ``0`` or ``0.0``. :param op: The reduce operation. :rtype: RDD Example: >>> from pysparkling import Context >>> my_rdd = Context().parallelize([('a', 4), ('b', 7), ('a', 2)]) >>> my_rdd.foldByKey(0, lambda a, b: a+b).collectAsMap()['a'] 6 """ return self.aggregateByKey(zeroValue, op, op)
[docs] def foreach(self, f): """applies ``f`` to every element It does not return a new RDD like :func:`~pysparkling.RDD.map`. :param f: Apply a function to every element. :rtype: None Example: >>> from pysparkling import Context >>> my_rdd = Context().parallelize([1, 2, 3]) >>> a = [] >>> my_rdd.foreach(lambda x: a.append(x)) >>> len(a) 3 """ self.context.runJob(self, lambda tc, x: [f(xx) for xx in x], resultHandler=None)
[docs] def foreachPartition(self, f): """applies ``f`` to every partition It does not return a new RDD like :func:`~pysparkling.RDD.mapPartitions`. :param f: Apply a function to every partition. :rtype: None """ self.context.runJob(self, lambda tc, x: f(x), resultHandler=None)
[docs] def fullOuterJoin(self, other, numPartitions=None): """returns the full outer join of two RDDs The output contains all keys from both input RDDs, with missing keys replaced with `None`. :param RDD other: The RDD to join to this one. :param int numPartitions: Number of partitions in the resulting RDD. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> sc = Context() >>> rdd1 = sc.parallelize([('a', 0), ('b', 1)]) >>> rdd2 = sc.parallelize([('b', 2), ('c', 3)]) >>> sorted( ... rdd1.fullOuterJoin(rdd2).collect() ... ) [('a', (0, None)), ('b', (1, 2)), ('c', (None, 3))] """ grouped = self.cogroup(other, numPartitions) return grouped.flatMap(lambda kv: [ (kv[0], (v_self, v_other)) for v_self in (kv[1][0] if kv[1][0] else [None]) for v_other in (kv[1][1] if kv[1][1] else [None]) ])
[docs] def getNumPartitions(self): """returns the number of partitions :rtype: int """ return len(self.partitions())
[docs] def getPartitions(self): """returns the partitions of this RDD :rtype: list """ return self.partitions()
[docs] def groupBy(self, f, numPartitions=None): """group by f :param f: Function returning a key given an element of the dataset. :param int numPartitions: Number of partitions in the resulting RDD. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> my_rdd = Context().parallelize([4, 7, 2]) >>> my_rdd.groupBy(lambda x: x % 2).mapValues(sorted).collect() [(0, [2, 4]), (1, [7])] """ return self.keyBy(f).groupByKey(numPartitions)
[docs] def groupByKey(self, numPartitions=None): """group by key :param int numPartitions: Number of partitions in the resulting RDD. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. """ if numPartitions is None: numPartitions = self.getNumPartitions() r = defaultdict(list) for key, value in self.toLocalIterator(): r[key].append(value) return self.context.parallelize(r.items(), numPartitions)
[docs] def histogram(self, buckets): """histogram :param buckets: A list of bucket boundaries or an int for the number of buckets. :returns: A tuple (bucket_boundaries, histogram_values) where bucket_boundaries is a list of length n+1 boundaries and histogram_values is a list of length n with the values of each bucket. Example: >>> from pysparkling import Context >>> my_rdd = Context().parallelize([0, 4, 7, 4, 10]) >>> b, h = my_rdd.histogram(10) >>> h [1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 1] """ if isinstance(buckets, int): num_buckets = buckets stats = self.stats() min_v = stats.min() max_v = stats.max() buckets = [min_v + float(i) * (max_v - min_v) / num_buckets for i in range(num_buckets + 1)] h = [0 for _ in buckets] for x in self.toLocalIterator(): for i, b in enumerate(zip(buckets[:-1], buckets[1:])): if b[0] <= x < b[1]: h[i] += 1 # make the last bin inclusive on the right if x == buckets[-1]: h[-1] += 1 return (buckets, h)
[docs] def id(self): """the id of this RDD""" return self._rdd_id
[docs] def intersection(self, other): """intersection of this and other RDD :param RDD other: The other dataset to do the intersection with. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> rdd1 = Context().parallelize([0, 4, 7, 4, 10]) >>> rdd2 = Context().parallelize([3, 4, 7, 4, 5]) >>> rdd1.intersection(rdd2).collect() [4, 7] """ return self.context.parallelize( list(set(self.toLocalIterator()) & set(other.toLocalIterator())) )
def isCheckpointed(self): return False
[docs] def join(self, other, numPartitions=None): """join :param RDD other: The other RDD. :param int numPartitions: Number of partitions in the resulting RDD. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> rdd1 = Context().parallelize([(0, 1), (1, 1)]) >>> rdd2 = Context().parallelize([(2, 1), (1, 3)]) >>> rdd1.join(rdd2).collect() [(1, (1, 3))] """ if numPartitions is None: numPartitions = self.getNumPartitions() d1 = dict(self.collect()) d2 = dict(other.collect()) keys = set(d1.keys()) & set(d2.keys()) return self.context.parallelize(( (k, (d1[k], d2[k])) for k in keys ), numPartitions)
[docs] def keyBy(self, f): """key by f :param f: Function that returns a key from a dataset element. :rtype: RDD Example: >>> from pysparkling import Context >>> rdd = Context().parallelize([0, 4, 7, 4, 10]) >>> rdd.keyBy(lambda x: x % 2).collect() [(0, 0), (0, 4), (1, 7), (0, 4), (0, 10)] """ return self.map(lambda e: (f(e), e))
[docs] def keys(self): """keys of a pair dataset :rtype: RDD Example: >>> from pysparkling import Context >>> Context().parallelize([(0, 1), (1, 1)]).keys().collect() [0, 1] """ return self.map(lambda e: e[0])
[docs] def leftOuterJoin(self, other, numPartitions=None): """left outer join :param RDD other: The other RDD. :param int numPartitions: Number of partitions in the resulting RDD. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> rdd1 = Context().parallelize([(0, 1), (1, 1)]) >>> rdd2 = Context().parallelize([(2, 1), (1, 3)]) >>> rdd1.leftOuterJoin(rdd2).collect() [(0, (1, None)), (1, (1, 3))] """ d_other = other.groupByKey().collectAsMap() return self.groupByKey().flatMap(lambda kv: [ (kv[0], (v_self, v_other)) for v_self in kv[1] for v_other in (d_other[kv[0]] if kv[0] in d_other else [None]) ])
def _leftSemiJoin(self, other): """left semi join This function is not part of the official Spark API hence its leading "_" :param RDD other: The other RDD. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> rdd1 = Context().parallelize([(0, 1), (1, 1)]) >>> rdd2 = Context().parallelize([(2, 1), (1, 3)]) >>> rdd1._leftSemiJoin(rdd2).collect() [(1, (1, ()))] """ d_other = other.groupByKey().collectAsMap() return self.groupByKey().flatMap(lambda kv: [ (kv[0], (v_self, ())) for v_self in kv[1] if kv[0] in d_other ]) def _leftAntiJoin(self, other): """left anti join This function is not part of the official Spark API hence its leading "_" :param RDD other: The other RDD. :param int numPartitions: Number of partitions in the resulting RDD. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> rdd1 = Context().parallelize([(0, 1), (1, 1)]) >>> rdd2 = Context().parallelize([(2, 1), (1, 3)]) >>> rdd1._leftAntiJoin(rdd2).collect() [(0, (1, None))] """ d_other = other.groupByKey().collectAsMap() return self.groupByKey().flatMap(lambda kv: [ (kv[0], (v_self, None)) for v_self in kv[1] if kv[0] not in d_other ])
[docs] def lookup(self, key): """Return all the (key, value) pairs where the given key matches. :param key: The key to lookup. :rtype: list Example: >>> from pysparkling import Context >>> Context().parallelize([(0, 1), (1, 1), (1, 3)]).lookup(1) [1, 3] """ return self.filter(lambda x: x[0] == key).values().collect()
[docs] def map(self, f): """map :param f: map function for elements :rtype: RDD Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3]).map(lambda x: x+1).collect() [2, 3, 4] """ return MapPartitionsRDD( self, MapF(f), preservesPartitioning=True, ).setName('{}:{}'.format(self.name(), f))
[docs] def mapPartitions(self, f, preservesPartitioning=False): """map partitions :param f: map function for partitions :rtype: RDD Example: >>> from pysparkling import Context >>> rdd = Context().parallelize([1, 2, 3, 4], 2) >>> def f(iterator): ... yield sum(iterator) >>> rdd.mapPartitions(f).collect() [3, 7] """ return MapPartitionsRDD( self, lambda tc, i, x: f(x), preservesPartitioning=preservesPartitioning, ).setName('{}:{}'.format(self.name(), f))
[docs] def mapPartitionsWithIndex(self, f, preservesPartitioning=False): """map partitions with index :param f: map function for (index, partition) :rtype: RDD Example: >>> from pysparkling import Context >>> rdd = Context().parallelize([9, 8, 7, 6, 5, 4], 3) >>> def f(splitIndex, iterator): ... yield splitIndex >>> rdd.mapPartitionsWithIndex(f).sum() 3 """ return MapPartitionsRDD( self, lambda tc, i, x: f(i, x), preservesPartitioning=preservesPartitioning, ).setName('{}:{}'.format(self.name(), f))
[docs] def mapValues(self, f): """map values in a pair dataset :param f: map function for values :rtype: RDD """ return MapPartitionsRDD( self, lambda tc, i, x: ((e[0], f(e[1])) for e in x), preservesPartitioning=True, ).setName('{}:{}'.format(self.name(), f))
[docs] def max(self): """returns the maximum element Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3, 4, 3, 2], 2).max() == 4 True """ return self.stats().max()
[docs] def mean(self): """returns the mean of this dataset :rtype: float Example: >>> from pysparkling import Context >>> Context().parallelize([0, 4, 7, 4, 10]).mean() 5.0 """ return self.stats().mean()
[docs] def meanApprox(self): """same as :func:`~pysparkling.RDD.mean()` :rtype: float """ return self.mean()
[docs] def min(self): """returns the minimum element""" return self.stats().min()
[docs] def name(self): """returns the name of the dataset""" if self._name is not None: return self._name prev = getattr(self, 'prev', None) while prev: if prev._name is not None: return prev._name prev = getattr(prev, 'prev', None) return 'RDD'
[docs] def partitionBy(self, numPartitions, partitionFunc=None): """Return a partitioned copy of this key-value RDD. :param int numPartitions: Number of partitions. :param function partitionFunc: Partition function. :rtype: RDD Example where even numbers get assigned to partition 0 and odd numbers to partition 1: >>> import pysparkling >>> sc = pysparkling.Context() >>> rdd = sc.parallelize([1, 3, 2, 7, 8, 5], 1) >>> keyvalue_rdd = rdd.map(lambda x: (x, x)) >>> keyvalue_rdd.partitionBy(2).keys().collect() [2, 8, 1, 3, 7, 5] """ if partitionFunc is None: partitionFunc = _hash new_partitions = [[] for _ in range(numPartitions)] for key_value in self.toLocalIterator(): idx = partitionFunc(key_value[0]) % numPartitions new_partitions[idx].append(key_value) return self.context._parallelize_partitions(new_partitions)
[docs] def persist(self, storageLevel=None): """Cache the results of computed partitions. :param storageLevel: Not used. """ return PersistedRDD(self, storageLevel=storageLevel)
[docs] def unpersist(self, blocking=False): """Remove the results of computed partitions from the cache Only affects :class:`~pysparkling.RDD.PersistedRDD` :param blocking: Not used. :rtype RDD` """ return self
[docs] def pipe(self, command, env=None): """Run a command with the elements in the dataset as argument. :param command: Command line command to run. :param dict env: environment variables :rtype: RDD .. warning:: Unsafe for untrusted data. Example: >>> from pysparkling import Context >>> piped = Context().parallelize(['0', 'hello', 'world']).pipe('echo') >>> b'hello\\n' in piped.collect() True """ if env is None: env = {} return self.context.parallelize(subprocess.check_output( [command] + x if isinstance(x, list) else [command, x] ) for x in self.collect())
[docs] def randomSplit(self, weights, seed=None): """Split the RDD into a few RDDs according to the given weights. :param list[float] weights: relative lengths of the resulting RDDs :param int seed: seed for random number generator :returns: a list of RDDs :rtype: list .. note:: Creating the new RDDs is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> rdd = Context().parallelize(range(500)) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], seed=42) >>> (rdd1.count(), rdd2.count()) (199, 301) """ sum_weights = sum(weights) boundaries = [0] for w in weights: boundaries.append(boundaries[-1] + w / sum_weights) random.seed(seed) lists = [[] for _ in weights] for e in self.toLocalIterator(): r = random.random() for i, (lb, ub) in enumerate(zip(boundaries[:-1], boundaries[1:])): if lb <= r < ub: lists[i].append(e) return [self.context.parallelize(l) for l in lists]
[docs] def reduce(self, f): """reduce :param f: A commutative and associative binary operator. Example: >>> from pysparkling import Context >>> Context().parallelize([0, 4, 7, 4, 10], 2).reduce(lambda a, b: a+b) 25 >>> Context().parallelize([0, 4, 7, 4, 10], 10).reduce(lambda a, b: a+b) 25 >>> Context().parallelize([0], 10).reduce(lambda a, b: a+b) 0 >>> Context().parallelize([], 10).reduce(lambda a, b: a+b) Traceback (most recent call last): ... ValueError: Can not reduce() empty RDD """ _empty = object() def reducer(values): try: return functools.reduce(f, (v for v in values if v is not _empty)) except TypeError as e: if e.args[0] == "reduce() of empty sequence with no initial value": return _empty raise e result = self.context.runJob( self, lambda tc, x: reducer(x), resultHandler=reducer ) if result is _empty: raise ValueError("Can not reduce() empty RDD") return result
[docs] def reduceByKey(self, f, numPartitions=None): """reduce by key :param f: A commutative and associative binary operator. :param int numPartitions: Number of partitions in the resulting RDD. :rtype: RDD .. note:: This operation includes a :func:`~pysparkling.RDD.groupByKey()` which is a local operation. Example: >>> from pysparkling import Context >>> rdd = Context().parallelize([(0, 1), (1, 1), (1, 3)]) >>> rdd.reduceByKey(lambda a, b: a+b).collect() [(0, 1), (1, 4)] """ return (self .groupByKey(numPartitions) .mapValues(lambda x: functools.reduce(f, x)))
[docs] def reduceByKeyLocally(self, f): """reduce by key and return a dictionnary :param f: A commutative and associative binary operator. :param int numPartitions: Number of partitions in the resulting RDD. :rtype: dict >>> from pysparkling import Context >>> from operator import add >>> rdd = Context().parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.reduceByKeyLocally(lambda a, b: a+b).items()) [('a', 2), ('b', 1)] """ return dict(self.reduceByKey(f).collect())
[docs] def treeReduce(self, f, depth=2): """same internal behaviour as :func:`~pysparkling.RDD.reduce()` :param depth: Not used. >>> from pysparkling import Context >>> from operator import add >>> rdd = Context().parallelize([-5, -4, -3, -2, -1, 1, 2, 3, 4], 10) >>> rdd.treeReduce(add) -5 >>> rdd.treeReduce(add, 1) -5 >>> rdd.treeReduce(add, 2) -5 >>> rdd.treeReduce(add, 5) -5 >>> rdd.treeReduce(add, 10) -5 """ return self.reduce(f)
[docs] def repartition(self, numPartitions): """repartition :param int numPartitions: Number of partitions in new RDD. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3], 2).repartition(1).getNumPartitions() 1 >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3], 2).repartition(4).getNumPartitions() 4 """ return self.coalesce(numPartitions, shuffle=True)
[docs] def repartitionAndSortWithinPartitions( self, numPartitions=None, partitionFunc=None, ascending=True, keyfunc=None, ): """Repartition and sort within each partition. :param int numPartitions: Number of partitions in new RDD. :param partitionFunc: function that partitions :param ascending: Sort order. :param keyfunc: Returns the value that will be sorted. :rtype: RDD Example where even numbers are assigned to partition 0 and odd numbers to partition 1 and then the partitions are sorted individually: >>> import pysparkling >>> sc = pysparkling.Context() >>> rdd = sc.parallelize([1, 3, 2, 7, 8, 5], 1) >>> kv_rdd = rdd.map(lambda x: (x, x)) >>> processed = kv_rdd.repartitionAndSortWithinPartitions(2) >>> processed.keys().collect() [2, 8, 1, 3, 5, 7] """ def partition_sort(data): return sorted(data, key=keyfunc, reverse=not ascending) return (self .partitionBy(numPartitions, partitionFunc) .mapPartitions(partition_sort))
[docs] def rightOuterJoin(self, other, numPartitions=None): """right outer join :param RDD other: The other RDD. :param int numPartitions: Number of partitions in new RDD. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> import pysparkling >>> sc = pysparkling.Context() >>> rdd1 = sc.parallelize([(0, 1), (1, 1)]) >>> rdd2 = sc.parallelize([(2, 1), (1, 3)]) >>> sorted(rdd1.rightOuterJoin(rdd2).collect()) [(1, (1, 3)), (2, (None, 1))] """ d_self = self.groupByKey().collectAsMap() return other.groupByKey().flatMap(lambda kv: [ (kv[0], (v_self, v_other)) for v_other in kv[1] for v_self in (d_self[kv[0]] if kv[0] in d_self else [None]) ])
[docs] def sample(self, withReplacement, fraction, seed=None): """randomly sample :param bool withReplacement: sample with replacement :param float fraction: probability that an element is sampled :param seed: (optional) Seed for random number generator :rtype: RDD Sampling without replacement uses Bernoulli sampling and ``fraction`` is the probability that an element is sampled. Sampling with replacement uses Poisson sampling where ``fraction`` is the expectation. Example: >>> from pysparkling import Context >>> rdd = Context().parallelize(range(1000)) >>> sampled = rdd.sample(False, 0.1, seed=5).collect() >>> len(sampled) 115 >>> sampled_with_replacement = rdd.sample(True, 5.0, seed=5).collect() >>> len(sampled_with_replacement) in (5067, 5111) # w/o, w/ numpy True """ sampler = (PoissonSampler(fraction) if withReplacement else BernoulliSampler(fraction)) return PartitionwiseSampledRDD( self, sampler, preservesPartitioning=True, seed=seed)
[docs] def sampleByKey(self, withReplacement, fractions, seed=None): """randomly sample by key :param bool withReplacement: sample with replacement :param dict fractions: per key sample probabilities :param seed: (optional) Seed for random number generator. :rtype: RDD Sampling without replacement uses Bernoulli sampling and ``fraction`` is the probability that an element is sampled. Sampling with replacement uses Poisson sampling where ``fraction`` is the expectation. Example: >>> import pysparkling >>> sc = pysparkling.Context() >>> fractions = {"a": 0.2, "b": 0.1} >>> rdd = (sc ... .parallelize(fractions.keys()) ... .cartesian(sc.parallelize(range(0, 1000)))) >>> sample = (rdd ... .sampleByKey(False, fractions, 2) ... .groupByKey().collectAsMap()) >>> 100 < len(sample["a"]) < 300 and 50 < len(sample["b"]) < 150 True >>> max(sample["a"]) <= 999 and min(sample["a"]) >= 0 True >>> max(sample["b"]) <= 999 and min(sample["b"]) >= 0 True """ sampler = (PoissonSamplerPerKey(fractions) if withReplacement else BernoulliSamplerPerKey(fractions)) return PartitionwiseSampledRDD( self, sampler, preservesPartitioning=True, seed=seed)
[docs] def sampleStdev(self): """sample standard deviation :rtype: float Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3]).sampleStdev() 1.0 """ return self.stats().sampleStdev()
[docs] def sampleVariance(self): """sample variance :rtype: float Example: >>> from pysparkling import Context >>> Context().parallelize([1, 2, 3]).sampleVariance() 1.0 """ return self.stats().sampleVariance()
[docs] def isEmpty(self): """ Returns whether or not RDD contains elements. :rtype: bool >>> from pysparkling import Context >>> Context().parallelize([]).isEmpty() True >>> Context().parallelize([1]).isEmpty() False """ return not self.partitions() or len(self.take(1)) == 0
[docs] def saveAsPickleFile(self, path, batchSize=10): """save as pickle file :returns: ``self`` :rtype: RDD .. warning:: The output of this function is incompatible with the PySpark output as there is no pure Python way to write Sequence files. Example: >>> from pysparkling import Context >>> from tempfile import NamedTemporaryFile >>> tmpFile = NamedTemporaryFile(delete=True) >>> tmpFile.close() >>> d = ['hello', 'world', 1, 2] >>> rdd = Context().parallelize(d).saveAsPickleFile(tmpFile.name) >>> 'hello' in Context().pickleFile(tmpFile.name).collect() True """ if fileio.File(path).exists(): raise FileAlreadyExistsException( 'Output {0} already exists.'.format(path) ) codec_suffix = '' if path.endswith(tuple('.' + ending for endings, _ in fileio.codec.FILE_ENDINGS for ending in endings)): codec_suffix = path[path.rfind('.'):] def _map(path, obj): stream = io.BytesIO() pickle.dump(obj, stream) stream.seek(0) fileio.File(path).dump(stream) if self.getNumPartitions() == 1: _map(path, self.collect()) return self self.context.runJob( self, lambda tc, x: _map( os.path.join(path, 'part-{0:05d}{1}'.format(tc.partitionId(), codec_suffix)), list(x), ), resultHandler=list, ) fileio.TextFile(os.path.join(path, '_SUCCESS')).dump() return self
[docs] def saveAsTextFile(self, path, compressionCodecClass=None): """save as text file If the RDD has many partitions, the contents will be stored directly in the given path. If the RDD has more partitions, the data of the partitions are stored in individual files under ``path/part-00000`` and so on and once all partitions are written, the file ``path/_SUCCESS`` is written last. :param path: Destination of the text file. :param compressionCodecClass: Not used. :returns: ``self`` :rtype: RDD """ if fileio.TextFile(path).exists(): raise FileAlreadyExistsException( 'Output {0} already exists.'.format(path)) def to_stringio(data): stringio = io.StringIO() for line in data: stringio.write('{}\n'.format(line)) stringio.seek(0) return stringio # fast single-file write for single partition RDDs if self.getNumPartitions() == 1: fileio.TextFile(path).dump(to_stringio(self.collect())) return self codec_suffix = '' if path.endswith(tuple('.' + ending for endings, _ in fileio.codec.FILE_ENDINGS for ending in endings)): codec_suffix = path[path.rfind('.'):] self.context.runJob( self.mapPartitions(to_stringio), lambda tc, stringio: ( fileio.TextFile( os.path.join(path, 'part-{0:05d}{1}'.format( tc.partitionId(), codec_suffix)) ).dump(stringio) ), resultHandler=list, ) fileio.TextFile(os.path.join(path, '_SUCCESS')).dump() return self
[docs] def setName(self, name): """Assign a new name to this RDD. :rtype: RDD """ self._name = name return self
[docs] def sortBy(self, keyfunc, ascending=True, numPartitions=None): """sort by keyfunc :param keyfunc: Returns the value that will be sorted. :param ascending: Specify sort order. :param int numPartitions: `None` means the output will have the same number of partitions as the input. :rtype: RDD .. note:: Sorting is currently implemented as a local operation. Examples: >>> from pysparkling import Context >>> rdd = Context().parallelize([5, 1, 2, 3]) >>> rdd.sortBy(lambda x: x).collect() [1, 2, 3, 5] >>> from pysparkling import Context >>> rdd = Context().parallelize([1, 5, 2, 3]) >>> rdd.sortBy(lambda x: x, ascending=False).collect() [5, 3, 2, 1] """ if numPartitions is None: numPartitions = self.getNumPartitions() return self.context.parallelize( sorted(self.collect(), key=keyfunc, reverse=not ascending), numPartitions, )
[docs] def sortByKey(self, ascending=True, numPartitions=None, keyfunc=itemgetter(0)): """sort by key :param ascending: Sort order. :param int numPartitions: `None` means the output will have the same number of partitions as the input. :param keyfunc: Returns the value that will be sorted. :rtype: RDD .. note:: Sorting is currently implemented as a local operation. Examples: >>> from pysparkling import Context >>> rdd = Context().parallelize( ... [(5, 'a'), (1, 'b'), (2, 'c'), (3, 'd')] ... ) >>> rdd.sortByKey().collect()[0][1] == 'b' True >>> from pysparkling import Context >>> rdd = Context().parallelize( ... [(1, 'b'), (5, 'a'), (2, 'c'), (3, 'd')] ... ) >>> rdd.sortByKey(ascending=False).collect()[0][1] == 'a' True """ return self.sortBy(keyfunc, ascending, numPartitions)
[docs] def stats(self): """stats :rtype: StatCounter Example: >>> from pysparkling import Context >>> d = [1, 4, 9, 16, 25, 36] >>> s = Context().parallelize(d, 3).stats() >>> sum(d)/len(d) == s.mean() True """ return self.aggregate( StatCounter(), lambda a, b: a.merge(b), lambda a, b: a.mergeStats(b), )
[docs] def stdev(self): """standard deviation :rtype: float Example: >>> from pysparkling import Context >>> Context().parallelize([1.5, 2.5]).stdev() 0.5 """ return self.stats().stdev()
[docs] def subtract(self, other, numPartitions=None): """subtract :param RDD other: The RDD to subtract from the current RDD. :param int numPartitions: Currently not used. Partitions are preserved. :rtype: RDD Example: >>> from pysparkling import Context >>> rdd1 = Context().parallelize([(0, 1), (1, 1)]) >>> rdd2 = Context().parallelize([(1, 1), (1, 3)]) >>> rdd1.subtract(rdd2).collect() [(0, 1)] """ list_other = other.collect() return MapPartitionsRDD( self, lambda tc, i, x: (e for e in x if e not in list_other), preservesPartitioning=True, )
[docs] def subtractByKey(self, other, numPartitions=None): """ Return each (key, value) pair in C{self} that has no pair with matching key in C{other}. >>> from pysparkling import Context >>> sc = Context() >>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 2)]) >>> y = sc.parallelize([("a", 3), ("c", None)]) >>> sorted(x.subtractByKey(y).collect()) [('b', 4), ('b', 5)] """ def filter_func(pair): _, (val1, val2) = pair return val1 and not val2 return self.cogroup(other, numPartitions).filter(filter_func).flatMapValues(lambda x: x[0])
[docs] def sum(self): """sum of all the elements :rtype: float Example: >>> from pysparkling import Context >>> Context().parallelize([0, 4, 7, 4, 10]).sum() 25 """ return self.context.runJob(self, lambda tc, x: sum(x), resultHandler=sum)
[docs] def sumApprox(self): """same as :func:`~pysparkling.RDD.sum()` """ return self.sum()
[docs] def take(self, n): """Take n elements and return them in a list. Only evaluates the partitions that are necessary to return n elements. :param int n: Number of elements to return. :rtype: list Example: >>> from pysparkling import Context >>> Context().parallelize([4, 7, 2]).take(2) [4, 7] Another example where only the first two partitions only are computed (check the debug logs): >>> from pysparkling import Context >>> Context().parallelize([4, 7, 2], 3).take(2) [4, 7] """ return self.context.runJob( self, lambda tc, i: i, allowLocal=True, resultHandler=lambda l: list(itertools.islice( itertools.chain.from_iterable(l), n, )), )
[docs] def takeSample(self, withReplacement, num, seed=None): # The code of this function is extracted from PySpark RDD counterpart at # https://spark.apache.org/docs/1.5.0/api/python/_modules/pyspark/rdd.html # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Return a fixed-size sampled subset of this RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> from pysparkling import Context >>> sc = Context() >>> rdd = sc.parallelize(range(0, 10)) >>> len(rdd.takeSample(True, 20, 1)) 20 >>> len(rdd.takeSample(False, 5, 2)) 5 >>> len(rdd.takeSample(False, 15, 3)) 10 """ numStDev = 10.0 if num < 0: raise ValueError("Sample size cannot be negative.") if num == 0: return [] initial_sample = self.take(num) initial_count = len(initial_sample) if initial_count == 0: return [] rand = random.Random(seed) if (not withReplacement) and num >= initial_count: # shuffle current RDD and return rand.shuffle(initial_sample) return initial_sample maxSampleSize = sys.maxsize - int(numStDev * math.sqrt(sys.maxsize)) if num > maxSampleSize: raise ValueError( "Sample size cannot be greater than %d." % maxSampleSize) fraction = RDD._computeFractionForSampleSize(num, initial_count, withReplacement) samples = self.sample(withReplacement, fraction, seed).collect() # If the first sample didn't turn out large enough, keep trying to take samples; # this shouldn't happen often because we use a big multiplier for their initial size. # See: scala/spark/RDD.scala while len(samples) < num: seed = rand.randint(0, sys.maxsize) samples = self.sample(withReplacement, fraction, seed).collect() rand.shuffle(samples) return samples[0:num]
@staticmethod def _computeFractionForSampleSize(sampleSizeLowerBound, total, withReplacement): # The code of this function is extracted from PySpark RDD counterpart at # https://spark.apache.org/docs/1.5.0/api/python/_modules/pyspark/rdd.html # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Returns a sampling rate that guarantees a sample of size >= sampleSizeLowerBound 99.99% of the time. How the sampling rate is determined: Let p = num / total, where num is the sample size and total is the total number of data points in the RDD. We're trying to compute q > p such that - when sampling with replacement, we're drawing each data point with prob_i ~ Pois(q), where we want to guarantee Pr[s < num] < 0.0001 for s = sum(prob_i for i from 0 to total), i.e. the failure rate of not having a sufficiently large sample < 0.0001. Setting q = p + 5 * sqrt(p/total) is sufficient to guarantee 0.9999 success rate for num > 12, but we need a slightly larger q (9 empirically determined). - when sampling without replacement, we're drawing each data point with prob_i ~ Binomial(total, fraction) and our choice of q guarantees 1-delta, or 0.9999 success rate, where success rate is defined the same as in sampling with replacement. """ fraction = float(sampleSizeLowerBound) / total if withReplacement: numStDev = 5 if sampleSizeLowerBound < 12: numStDev = 9 return fraction + numStDev * math.sqrt(fraction / total) delta = 0.00005 gamma = -math.log(delta) / total return min(1, fraction + gamma + math.sqrt(gamma * gamma + 2 * gamma * fraction))
[docs] def takeOrdered(self, n, key=lambda x: x): """ Return the first n elements of the RDD based on ascending order. A custom key function can be supplied to customize the sort order >>> from pysparkling import Context >>> Context().parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7]).takeOrdered(6) [1, 2, 3, 4, 5, 6] >>> Context().parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7], 2).takeOrdered(6, key=lambda x: -x) [10, 9, 7, 6, 5, 4] """ return self.sortBy(key).take(n)
[docs] def toLocalIterator(self): """Returns an iterator over the dataset. Example: >>> from pysparkling import Context >>> sum(Context().parallelize([4, 9, 7, 3, 2, 5], 3).toLocalIterator()) 30 """ return self.context.runJob( self, lambda tc, i: list(i), resultHandler=lambda l: (x for p in l for x in p), )
[docs] def top(self, num, key=None): """Top N elements in descending order. :param int num: number of elements :param key: optional key function :rtype: list Example: >>> from pysparkling import Context >>> r = Context().parallelize([4, 9, 7, 3, 2, 5], 3) >>> r.top(2) [9, 7] """ def unit(x): return x if key is None: key = unit return self.sortBy(key, ascending=False).take(num)
[docs] def union(self, other): """union :param RDD other: The other RDD for the union. :rtype: RDD Example: >>> from pysparkling import Context >>> my_rdd = Context().parallelize([4, 9, 7, 3, 2, 5], 3) >>> my_rdd.union(my_rdd).count() 12 """ return self.context.union((self, other))
[docs] def values(self): """Values of a (key, value) dataset. :rtype: RDD """ return self.map(lambda e: e[1])
[docs] def variance(self): """The variance of the dataset. :rtype: float Example: >>> from pysparkling import Context >>> Context().parallelize([1.5, 2.5]).variance() 0.25 """ return self.stats().variance()
[docs] def zip(self, other): """zip :param RDD other: Other dataset to zip with. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> my_rdd = Context().parallelize([4, 9, 7, 3, 2, 5], 3) >>> my_rdd.zip(my_rdd).collect() [(4, 4), (9, 9), (7, 7), (3, 3), (2, 2), (5, 5)] """ return self.context.parallelize( zip(self.toLocalIterator(), other.toLocalIterator()) )
[docs] def zipWithIndex(self): """Returns pairs of an original element and its index. :rtype: RDD .. note:: Creating the new RDD is currently implemented as a local operation. Example: >>> from pysparkling import Context >>> my_rdd = Context().parallelize([4, 9, 7, 3, 2, 5], 3) >>> my_rdd.zipWithIndex().collect() [(4, 0), (9, 1), (7, 2), (3, 3), (2, 4), (5, 5)] """ return self.context.parallelize( (d, i) for i, d in enumerate(self.toLocalIterator()) )
[docs] def zipWithUniqueId(self): """Zip every entry with a unique index. This is a fast operation. :rtype: RDD Example: >>> from pysparkling import Context >>> my_rdd = Context().parallelize([423, 234, 986, 5, 345], 3) >>> my_rdd.zipWithUniqueId().collect() [(423, 0), (234, 1), (986, 4), (5, 2), (345, 5)] """ num_p = self.getNumPartitions() return MapPartitionsRDD( self, lambda tc, i, x: ( (xx, e * num_p + tc.partition_id) for e, xx in enumerate(x) ), preservesPartitioning=True, )
class MapPartitionsRDD(RDD): def __init__(self, prev, f, preservesPartitioning=False): """``prev`` is the previous RDD. ``f`` is a function with the signature ``(task_context, partition index, iterator over elements)``. """ RDD.__init__(self, prev.partitions(), prev.context) self.prev = prev self._name = '{}:{}'.format(prev.name(), f) self.f = f self.preservesPartitioning = preservesPartitioning def compute(self, split, task_context): return self.f(task_context, split.index, self.prev.compute(split, task_context._create_child())) def partitions(self): return self.prev.partitions() class PartitionwiseSampledRDD(RDD): def __init__(self, prev, sampler, preservesPartitioning=False, seed=None): """RDD with sampled partitions. :param RDD prev: previous RDD :param sampler: a sampler :param bool preservesPartitioning: preserve partitioning (not used) :param int seed: random number generator seed (can be None) """ RDD.__init__(self, prev.partitions(), prev.context) if seed is None: seed = random.randint(0, 2 ** 31) self.prev = prev self.sampler = sampler self.preservesPartitioning = preservesPartitioning self.seed = seed def compute(self, split, task_context): random.seed(self.seed + split.index) if numpy is not None: numpy.random.seed(self.seed + split.index) return ( x for x in self.prev.compute(split, task_context._create_child()) for _ in range(self.sampler(x)) ) def partitions(self): return self.prev.partitions() class PersistedRDD(RDD): def __init__(self, prev, storageLevel=None): """persisted RDD :param RDD prev: previous RDD """ RDD.__init__(self, prev.partitions(), prev.context) self.prev = prev self.storageLevel = storageLevel self._cache_manager = None self._cid = None def compute(self, split, task_context): if self._rdd_id is None or split.index is None: self._cid = None else: self._cid = (self._rdd_id, split.index) if not task_context.cache_manager.has(self._cid): data = list(self.prev.compute(split, task_context._create_child())) task_context.cache_manager.add(self._cid, data, self.storageLevel) self._cache_manager = task_context.cache_manager else: log.debug('Using cache of RDD {} partition {}.'.format(*self._cid)) data = task_context.cache_manager.get(self._cid) return iter(data) def unpersist(self, blocking=False): if self._cache_manager: self._cache_manager.delete(self._cid) unpersisted_rdd = RDD(self.partitions(), self.context) return unpersisted_rdd class EmptyRDD(RDD): def __init__(self, context): RDD.__init__(self, [], context) # pickle-able helpers class MapF(object): def __init__(self, f): self.f = f def __call__(self, tc, i, x): return (self.f(xx) for xx in x) def unit_map(task_context, elements): return list(elements) def unit_collect(l): return [x for p in l for x in p] def sum_counts_by_keys(list_of_pairlists): r = defaultdict(int) # calling int results in a zero for l in list_of_pairlists: for key, count in l.items(): r[key] += count return r